
Implementing an
accessibility-focused design
system in Drupal
Amy M. Drayer
jen neveau
Gabe Ormsby

University of Minnesota campus

Why is this statement important?

“This is how bad design makes it out into
the world. Not due to malicious intent,
but having no intent at all.”

-Mike Monteiro

Design with intent
Putting principles into action

Project goals and vision

(Universally) Accessible
Honest
Inclusive
Mindful
Private
Simple
Sustainable

(Universally) Accessible
Deliver content and services where barriers to access
are removed for all people to use regardless of
technology, format, or methods of delivery.

Avoid building to one way of doing or being. Build to be
understandable, in a way that allows us to be human
and make errors.

Honest
Be transparent.

Provide only accurate content written with
non-biased language and clearly identify opinionated
content. Fight disinformation, or the act of
intentionally deceiving in content and algorithms.

Inclusive
Lead with person-first design, designing with people,
not for them. Be aware of our own biases and
assumptions, and recognize we are not the user.

Embrace people as complex beings, where average
doesn’t exist.

Mindful

Make decisions that prioritize user wellbeing, don’t
build to steal attention, and avoid deceptive and
manipulative patterns.

Private

Promote and ensure privacy through security and
personal data ownership. Provide these tenets in
systems and services to the best of our ability and
be transparent where we cannot.

Simple

Simple is challenging; it’s curating and cultivating the
message concisely and clearly.

It’s discovering the most elegant semantic technical
solution, and the intentional use of the resources
available.

Sustainable
Factor in energy source and consumption for optimizations,
from server to client side. Just as people do not deserve a
reduced experience, our planet does not deserve to suffer
the consequences of bad design and web delivery.

Sustainability is as much about our planet’s wellbeing as it
is our own, as they are intertwined.

U Libraries Design System

(Universally) Accessible
Honest
Inclusive
Mindful
Private
Simple
Sustainable

Accessibility is aesthetic.
simplify code
simplify selectors #this-one #that-thing .this-button span
:not, ~, +, :first-child, :only-child, :nth-child(),
:first-of-type, :last-of-type, :nth-of-type(), [att=value]

honor user settings to improve accessibility
mind high CPU styles for sustainability
● border-radius
● box-shadow and text-shadow
● opacity
● transform
● filter
● position: fixed

Why is this statement important?

Making it work in Drupal
● Provide a web components-based editing

system for content contributors
● Theme using web components provided by the

design system

Why is this statement important?
The editing experience
for content contributors

Why is this statement important?

Removing options...

● Prevents layout and content choices that are
counterproductive (break the intent of the design
system)

● Saves the content contributor from having to
think about irrelevant choices

Why is this statement important?

Setting constraints

● No Layout Builder
● No In Place Editing
● Minimal WYSIWYG toolbar configurations,

tailored to specific content (Inline elements, lists,
larger-scoped components)

Why is this statement important?

Keep the Design System in mind

● Editing interface matches Design System
language for each web component

● Field-level help text links back to Design System
for details and rationale

● Staff training similarly references both Design
System components and Drupal implementation

Design System-to-Drupal

The Design System
gives us web
components and
the canonical
markup for them.

Why is this statement important?

Applying the abstract
web components to
Drupal

Why is this statement important?

Paragraphs as building blocks
● https://drupal.org/project/paragraphs
● Design system components were implemented

as Paragraphs
● Allows for nesting of elements (cards in card

decks, text paragraphs inside sections)
● Each type contains fields for content and also

for editor-accessible settings.

Example paragraph types

Page body as Paragraphs

Content
section
fields

The editing experience in summary
● The "blob of body text" and wealth of rich text options is gone.
● Content editors think structurally about how their content fits into

available components.
● Formatting options are tightly constrained to those that make sense

within a given component and which meet accessibility requirements.
● Fields are mostly for displayed content, but some turn into

configuration as the theme processes them.

Theming (the Paragraphs)
to fit the design system

Theme flow as a 3-step process

● Catch: Hook into the theming process where Drupal would
normally go -- The Twig files
○ For Paragraphs,

paragraph--paragraph-type.html.twig
● Tweak: Manipulate inbound data where needed to work with

design system expectations -- Twig or theme hooks
● Redirect: Send tweaked data to theme's design system

components

Theme flow
Step 1: Catch

[...]
<!-- THEME DEBUG -->
<!-- THEME HOOK: 'paragraph' -->
<!-- FILE NAME SUGGESTIONS:
 * paragraph--ds-content-section--default.html.twig
 x paragraph--ds-content-section.html.twig
 * paragraph--default.html.twig
 * paragraph.html.twig
-->
<!-- BEGIN OUTPUT from
'sites/www.lib.umn.edu/themes/umnlib/templates/paragraphs/paragraph--
ds-content-section.html.twig' -->

<section class="color-block hero" id="homepage">
[...]

Catch: Standard Drupal template behavior

"Catch" just means create a template where Drupal is
going to look. For a specific example:

Our design system component: Content section

Implemented as: A paragraph of type ds-content-section

Catch the theming process at: our-theme/templates/paragraphs/
 paragraph--ds-content-section.html.twig

Let's dig into that Twig file for the next two steps...

Excerpt 1: paragraph--ds-content-section.html.twig
{#
/**
 * This template passes final rendering off to a design system pattern
template
 * in theme's templates/components/ directory. Here, we munge the data just
 * enough to fit the expectations of the abstract DS pattern. That means:
 [...]
 * This approach will allow other Drupal Paragraphs, Block or Views, to also
 * rely on the component templates, by ensuring a consistent 'inbound'
 * vocabulary.
 */
#}

Excerpt 2: paragraph--ds-content-section.html.twig
{% set section_classes =
content.field_ds_section_classes|render|striptags|trim|split(' ') %}

{% set section_id = content.field_ds_section_id|render|striptags|trim|split('
')|first ?: 's-' ~ paragraph.id() %}

This is Step 2...Tweak!

Why tweak? Paragraph data is not
necessarily Component data

● Stuff that makes sense for an editor to enter may not perfectly map to
stuff a design system component needs

● We alter existing data and add new data when sending a Paragraph
to a Component

● Easy stuff can happen in Twig
● Complicated stuff happens in umnlib.theme, mostly preprocess and

alter hooks -- 2,000 lines worth (maybe 50% comments)
● Recall the Paragraph entry form for a content section...

Part of the form for a content section paragraph

Excerpt 2 (again):
paragraph--ds-content-section.html.twig
{% set section_classes =
content.field_ds_section_classes|render|striptags|trim|split(' ') %}

{% set section_id = content.field_ds_section_id|render|striptags|trim|split('
')|first ?: 's-' ~ paragraph.id() %}

Excerpt 3: paragraph--ds-content-section.html.twig
{% embed '@components/section/section.html.twig' with {
 content: content.field_section_items,
 heading: content.field_ds_section_heading,
 heading_element: content.heading_element,
 subtitle: content.field_section_subtitle,
 section_classes: section_classes,
 section_id: section_id,
 classes: classes,
 back_to_top: content.back_to_top,
} %}
{% endembed %}

...And here is Step 3: Redirect. What's going on here?

The "redirect" step relies on the Components
module
● https://drupal.org/project/components
● "The Components module makes it easier for a theme to organize

its components. It allows themes (and modules) to register Twig
namespaces and provides some additional Twig functions and
filters for use in Drupal templates."

● Rephrased, allows us to define a special templates directory for
components in our theme.info.yml file and use `@components` in
Twig to reference that directory.

Excerpt of umnlib.info.yml
...

components:
 namespaces:
 components: templates/components
...

What's in
templates/
components?

Excerpt 3 (again):
paragraph--ds-content-section.html.twig
{% embed '@components/section/section.html.twig' with {
 content: content.field_section_items,
 heading: content.field_ds_section_heading,
 heading_element: content.heading_element,
 subtitle: content.field_section_subtitle,
 section_classes: section_classes,
 section_id: section_id,
 classes: classes,
 back_to_top: content.back_to_top,
} %}
{% endembed %}

That was the theme template for the
content section paragraph type.

Let's go look at the theme template for the
content section web component.

Excerpt 1: templates/components/section/section.html.twig
[...]
/**
 * Available variables:
 * - content: The content items within the article. Optional.
 * - heading: The heading for the article. Required.
 * - heading_element: The appropriate level heading. Required.
 * - subtitle: Extension to heading, not included in side navigation. Optional.
 * - back_to_top: Boolean flag indication whether to include a 'back to top' \
 link. Optional.
 * - section_classes: Array. Class options from paragraph type. Optional.
 * - section_id: String. ID attribute value. Optional.
 * - classes: Classes array passed by parent theme or module.
[...]

Excerpt 2: templates/components/section/section.html.twig

[...]
* This file may be used via twig 'embed' by any number of theme templates for
* Views, Blocks, or Paragraphs. The calling template is responsible for
* altering source data to fit the pattern's expected variables.
*
* See this theme's
templates/paragraphs/paragraph--ds-content-section.html.twig
* for a sample implementation.
*/
[...]

Excerpt 3: templates/components/section/section.html.twig

<section{{ attributes.addClass(section_classes).setAttribute('id', section_id) }}>
{% if subtitle.0 %}
 <{{heading_element}}>
 {{ heading }} {{ subtitle }}
 </{{heading_element}}>
{% else %}
 <{{heading_element}}>{{ heading }}</{{heading_element}}>
{% endif %}
{% if content|render %}
 {{ content }}
{% endif %}
{% if back_to_top %}
 <p>Back to top</p>
{% endif %}
</section>

Recap: Implementing our Design System in a Drupal
theme

1. Use the default paragraph--paragraph-type.html.twig
files to catch the theme flow

2. Tweak data available to the paragraph type right in the twig template
or through theme alter or preprocess functions to fit design system
component needs

3. Redirect rendering to a web component template with the help of
the Component Libraries module and Twig embed functionality

4. The same approach works with Views, Blocks, and other templates

Tweaking revisited: Fixing a thing that's
bugged me since 2008
Remember this from our component template section.html.twig?

<{{heading_element}}>{{ heading }}</{{heading_element}}>

umnlib_get_heading_level():

A helper function in our theme that finds the appropriate heading level
for any heading-like field.

● We know what fields are used for headings and we know what
paragraph types they are in (card decks and content sections)

● Instead of hard coding "<h2>" or "<h3>" in a twig template and
hoping it works, we use "$heading_element"

● Probably rather expensive, but we have Varnish caching in front.

Why is this statement important?

Accessible content

Content strategy

“The University of Minnesota Libraries’ website
prioritizes the support of users new to our site
and services, and by doing so, supports all
users in their goal to find and access our
resources and apply them to their work, and our
goal to engage and inspire our diverse
community of users.”

Why is this statement important? Content guidelines

Why is this statement important? Content guidelines

● Use descriptive headings and links
● Use sentence casing
● Write for a 8th grade or lower literacy level
● Use short sentences and paragraphs
● Use bulleted lists

Why is this statement important? Content audit and remediation

Why is this statement important? Content governance and workflow

Draft > Pending WCMC review > Published

Pending deletion or Archived

Lessons learned

● Content first development worked! (mostly)
● The shift away from WYSIWYG authoring was hard.
● Ongoing communication is key.
● Workflow is important, but keep it simple.
● Real content doesn’t always fit.

Lessons learned

● It paid off!

Thank you.

Amy Drayer adrayer@umn.edu
jen neveau jneveau@umn.edu
Gabe Ormsby gormsby@umn.edu

mailto:adrayer@umn.edu
mailto:jneveau@umn.edu
mailto:gormsby@umn.edu

